
Solution Deployment:
Deploying Software

Filipe Correia, UPorto



The aim of this presentation is to present the main 

concepts about software deployment, including its 

connection with DevOps principles and practices, the 

associated packaging and distribution methods, the 

relation between deployment and software 

architecture, and the activities and technologies used 

for deploying.

Aim and objectives



At the end of this presentation, you will be able to:

• Identify software packaging and distribution methods;
• Explain the relationship between deployment and 

software architecture;
• Identify technologies and standards used for deploying 

software;
• Design the deployment environment of a given system.

Learning outcomes



• Context
• Packaging and Distribution
• Software Architecture
• Activities
• Automation
• Environments
• DevOps
• Deployment Diagrams

Table of contents



Context

• Historically, new software releases would be sparse, 
include a substantial number of features, and 
require manual installation on each device where it 
was intended to run;

• Deploying software has changed substantially with the 
Internet and the increased use of distributed systems. 
Software is now often deployed to many customers in 
minutes on a schedule that is controlled mostly by its 
producer; 

• Cloud computing democratized the access by software 
developers to computing infrastructures that can 
scale according to the needs of any organization, and 
avoid the risks and cost of large investments in 
infrastructure.



Packaging and Distribution

In order to distribute a software system it is often 
beneficial to package it in some way. Popular approaches 
to packaging software include installers and package 
managers.

• Installers: Software that installs another software system 
onto a computer. Some installers will copy to the device files 
that they already contain, while others will download the 
required files from a remote location.
Examples: Windows Installer – MSI , Android Application Package –
APK.

(continues)



Packaging and Distribution

• Package managers: Package managers are software tools 
used to manage the installation of other software systems. 
They automate the processes of installing, upgrading, 
configuring and removing software for a device in a consistent 
and convenient way, from a repository of available software 
packages.
Examples: Microsoft Store (Windows), App Store (Mac), Homebrew 
(Mac) Advanced Package Tool – APT (Linux/Debian).



Software Architecture

• Cloud computing allows the flexibility to scale a system 
to follow variation in its usage; 

• However, the architecture of software systems needs to 
be designed specifically to take full benefit of the 
scalability supported by cloud services:
• Monolithic architectures are being used when the 

system consists of a single software service and is 
deployed and run as a single unit. 

• Microservices architectures are used when a system is 
designed to have many different services that can be 
deployed and run independently, and that are resilient to 
failures from other services.



Software Architecture

• The figure below illustrates the differences between the 
two kinds of architecture: monolithic and microservices;



Software Architecture

• Both architectures (monolithic and microservices) can 
organize the system according to different components 
(e.g. the monolithic system in the previous slide 
features two components) but the monolithic system 
will run these as a single service, while microservices
will favor having multiple services, each with its own 
database, and they should be able to evolve almost 
independently;



Activities

• Software deployment comprises a set of activities
required to make a software system available to its
intended end-users;

• These activities include:
• Build and Release: Building software involves the 

several activities required to generate a runnable software 
system from source code. These so called builds are 
designated as releases when they are made available to 
the general public;

• Install: Making the software system available in the 
device where it will be run. This often goes beyond 
copying files to a device, and implies also adding 
configuration parameters to the software system or to the 
underlying operating system;



Activities

• Run: To run a software system is to execute it in a 
chosen hardware device, thus making use of its processor, 
but possibly also memory and storage resources;

• Update: To update a software system is to replace it by a 
newer release. On some cases this can be done manually 
by the end-user; in other cases it can be done 
automatically or semi-automatically;

• Auto-update: A software system with auto-update 
capability is one that is able to detect that a new release 
exists, and replace itself with that new release, with no 
intervention by the end-user;



Activities

• Schema/data migration: Often the structure of data 
from the previous version of a software system needs to 
be transformed so that it can be used used by the new 
version. Schema/data migration is the process of doing 
such data transformations, and is performed on a 
database whenever it is necessary to update or revert it to 
some newer or older version;

• Decommission: Decommissioning a software system is 
to stop its execution and remove it from service. 



Automation

Software deployment has changed through the years to respond to the 
ever-more demanding needs of organizations. Although it is done 
manually in a lot of contexts, there are now many others in which 
continuous deployment is the norm. These two different approaches 
can be defined in the following way:

• Manual Deployment
The process of putting new versions of a software system into operation for 
end-users by manually copying the software to its intended infrastructure and 
running it;

• Continuous Deployment
Teams produce software in small batches, that are delivered to the customer or 
end-users as as soon as they are ready. This approach fosters an incremental 
approach to updating applications. It requires that the deployment process is 
automated, but helps to reduce the cost and risk of delivering a new version.



Environments

• A deployment environment is composed by the 
infrastructure and the software in which a software 
system is deployed and executed;

• Different kinds of deployment environments serve 
different purposes, from testing to staging, to 
production:

• A testing environment has the goal of allowing human 
testers to exercise new or updated features before they 
are incorporated into other environments;

(continues)



Environments

• A staging environment seeks to provide access to the 
next immediate version of a system, in an environment 
that is as similar as possible to the one in production, in 
order to allow trying and experimenting with that version 
before it goes into production;

• A production environment is the one that users directly 
interact with. Deploying to production is in many contexts 
a sensitive step, especially when the system can’t appear 
to stop from the end-user perspective.



DevOps

• The word DevOps is the agglutination of the words Development
and Operations. DevOps is a movement based in the idea of 
joining professional roles that traditionally would have little 
interaction with each other and that span software 
development, quality assurance and operations.

• Software Development – the activities related with the actual 
creation of the software system;

• Quality Assurance – testing and other 
activities that prevent software defects 
or other problems that may directly 
affect customers;

• Operations – the activities related with 
putting and keeping software in 
operation, from infrastructure, to 
deployment, to monitoring;



DevOps

• The core values of DevOps can be enounced as the 
CAMS acronym, which stands for:
• Culture – At the core of DevOps are motivations related to 

people and business. Fostering a culture of sharing 
responsibility and multidisciplinary teams is one of the main 
goals of DevOps;

• Automation – The automation of processes allows to make 
them repeatable, which eases debugging and reduces the 
possibility of human errors;

• Measurement – Monitor running systems to obtain feedback 
that can inform improvements done by software development 
teams;

• Sharing – DevOps values transparency and openness. The 
collective intelligence of a team makes it more efficient and 
greater than just the sum of its parts.



DevOps & Deployment

• DevOps has several implications in what concerns the 
deployment of software;

• The automation of everything related to deployment is 
one of the most important implications, and can span 
different concerns:

• Infrastructure as code – defining the infrastructure 
needed by a system using code allows to recreate at any 
time using a cloud service.
Tool examples: Chef, Puppet, Terraform

(continues)



DevOps & Deployment

• Continuous delivery – streamlining the process of 
incorporating new development in a production system 
allows software to be released at any time and as often as 
needed.
Tool examples: Jenkins, Travis, Gitlab pipelines

(continues)



DevOps & Deployment

• Test automation – automating the execution of tests 
provides a safety net that minimizes concerns when 
making changes to the system.
Tool examples: xUnit, Selenium, Cucumber

• Containerization – Software containers allow to isolate 
the system from the environment in that it is deployed, so 
that it can be easily deployed to any environment as 
needed.
Tool examples: Docker



DevOps & Deployment

• Orchestration – Automated configuration and 
coordination of computer systems and software, often 
with the use of containerization.
Tool examples: Kubernetes, Docker swarm

• Telemetry – Instrumentation of software systems to 
collect data on their use and performance (e.g., how are 
feature used, crashes and start-up and processing times).
Tool examples: Datadog, Kibana


	Solution Deployment:�Deploying Software
	Aim and objectives
	Learning outcomes
	Table of contents
	Context
	Packaging and Distribution
	Packaging and Distribution
	Software Architecture
	Software Architecture
	Software Architecture
	Activities
	Activities
	Activities
	Automation
	Environments
	Environments
	DevOps
	DevOps
	DevOps & Deployment
	DevOps & Deployment
	DevOps & Deployment
	DevOps & Deployment

